# Reformate Cleanup: The Case for Microchannel Architecture

DOE Hydrogen and Fuel Cells 2003 Annual Merit Review

May 19-22, 2003

W.E. TeGrotenhuis

K.P. Brooks, J.M. Davis, C.M. Fischer, D.L. King,L.R. Pederson, G.C. Rawlings, V.S. Stenkamp,R.S. Wegeng, G.A. Whyatt

Pacific Northwest National Laboratory





#### **Overview**

- ▶ Reformate Cleanup
  - Water Gas Shift (WGS)
  - Preferential Oxidation (PROX)
  - Desulfurization
- ► Balance of Plant
  - Water Management Partial Condenser / Phase Separator



## **Objectives and Relevance**

### Overall Objective

 Apply microchannel architectures where appropriate in fuel processing for transportation, stationary, and portable applications to reduce size and weight, improve fuel efficiency, and enhance operation.

### Technical Challenges – Approaches

- Compact size and weight to meet packaging requirements rapid heat and mass transfer for high hardware productivity
- Thermal management high heat transfer effectiveness in heat exchangers and reactors for maximum heat utilization and high fuel efficiency
- Water management compact and efficient air-cooled partial condensers
- Rapid start-up imbedded heat transfer in reactors facilitates rapid heating
- Cost improved productivity of precious metal catalysts





FY 1998 Full-size gasoline vaporizer/combustor R&D100 Award

### **Project Timeline**



FY 1999 Fast SR kinetics observed in a microchannel reactor

WASO.



**FY 2000** 10 kWe SR system Invented phase separator concept



Demonstrate rapid start capability

Sulfur management

Integrated reformer/fuel cell demonstration at ~2 kWe



FY2001 10 kWe reactor testing First "low dP" vaporizers Demonstrated partial condenser



2 kWe WGS and PROX reactors. Improve SR kinetics and

sulfur tolerance.

WGS/PROX catalyst studies Differential temperature reactor concept SR/WGS/PROX initial integration Air-cooled partial condenser

**FY 2002** 



U.S. Department of Energy 4

# Differential Temperature Water Gas Shift Reactor Objective/Approach

- Objective:
  - 90% Conversion single-stage WGS reactor < 3 liters at full-scale</li>
- Approach:
  - Precious metal catalyst for high activity
  - Integrate microchannel heat exchange for temperature control
  - Optimize thermal profile
  - Reduce catalyst loading by up to 1/2
- Relevance
  - Smaller size higher power density and specific power
  - Reduced cost
    - Improved catalyst efficiency
    - 3 devices collapsed into 1
  - Potential of higher energy efficiency



Ideal profile





# Differential Temperature Water-Gas Shift

**Progress: Multi-channel Reactor Testing** 

#### **Prototype 7-channel Reactor**



Reactor can be operated isothermally or with a temperature gradient

#### PROGRESS:

- Catalytic activity improved in multi-channel prototype reactor
- Up to 79% CO conversion (12.4% to 2.6% dry CO) in single stage at 100,000 GHSV and 0.65 steam:gas.

#### ► ISSUES:

- Activity diminishes at lower GHSV
- Loss of temperature dependence

Activity coefficients from isothermal reactor FEA model:

$$r_{CO} = \rho_B k_{CO}(T) p_{CO}^{-1} p_{H_2}^{-1} p_{CO_2}^{-1/2} \left( p_{H_2O} p_{CO} - \frac{p_{H_2} p_{CO_2}}{K_{eq}(T)} \right)$$





# Differential Temperature Water-Gas Shift

#### **Progress: Differential Mode Testing**



#### **Conditions**

- Steam Reformate Feed
  - 12.4% dry CO
  - 14.3% dry CO<sub>2</sub>
  - 0.65 Steam:Gas
- 100K GHSV
- Isothermal operation at high heat exchange flow
- Differential temperature operation
  - Feed at 350C
  - 2 SLPM air coolant fed at outlet temperature

- Isothermal Operation Outlet Gas CO%
- ☐ Differential Temperature Operation Outlet Gas CO%
- Isothermal Operation CO Conversion
- ☐ Differential Temperature CO Conversion
- Equilibrium Conversion



# Differential Temperature Water-Gas Shift

**Issue: Flow Maldistribution** 

- Flow maldistribution between channels is an important issue
  - Flow rate  $\alpha d_h^3$
  - Compounded by increased heat and mass transfer resistance
- Example
  - Impact of 20% distribution in hydraulic diameter on optimal conversion profile
  - Does not account for heat and mass transfer effects
  - Does not account for catalyst loading maldistribution





### Differential Temperature Water-Gas Shift **Future Plans**

- Continue catalyst development
  - Long-term testing
  - Start-up/shutdown and temperature cycling
  - Evaluate new formulations
    - Improved activity
    - Better activity maintenance
  - Sulfur sensitivity
  - Optimization of geometry and loading
- Multi-channel Improvements
  - Apply improved design and fabrication techniques to improve channel consistency
  - Demonstrate >90% conversion in single stage with integral heat exchange
- Develop WGS Reactor at 2 kWe-scale
  - Optimize catalyst productivity
  - Thermally integrate with 2 kWe-scale reformer system



## Microchannel PROX Reactor Investigations

▶ Objective: Determine whether microchannel architecture provides opportunities for size, weight reduction for PROX reactor.

#### Approach:

- Single-channel catalyst tests evaluate industrial PROX catalysts for fast kinetics
- Design & test 2 kWe PROX reactor unit; confirm favorable operational characteristics
- Investigate weight reductions through use of low-density alloys (e.g., alloys of aluminum and titanium)
- Investigate transient and startup characteristics

#### Progress:

 1st Stage PROX microchannel reactor demonstrated at 2 kWe scale – exhibits high productivity due to internal microchannel heat exchangers providing temperature control



# Preliminary Single Channel Catalyst Tests Used to Down-select for 2kW PROX Unit

- At 1% CO in reformate, both precious metal and non-precious metal catalysts can be employed for PROX
  - Both catalysts show maximum CO conversion around 200°C
  - Adiabatic operation must be avoided (excessive temperature rise)
- ► At 0.1% CO in reformate, precious metal catalyst are required
  - Higher CO activity at lower temperatures (~100°C)
    - Lower activation energy
    - Different dependence on CO concentration (analogous to wgs)
  - Adiabatic operation may be possible
- Non-precious metal catalyst was selected for 2kW PROX test in microchannel hardware
  - CO ~1%, input from wgs reactor
  - Lower catalyst cost
  - Higher CO oxidation selectivity (lower H<sub>2</sub> consumption and O<sub>2</sub> requirements)



# **Selective CO Oxidation (PROX)** With Non-Precious Metal Catalyst

Wet GHSV = 100,000, S/G = 0.3,  $O_2/CO = 1.0$ 





### **Demonstration of Microchannel PROX Unit**

- Designed as 1<sup>st</sup>
   Stage PROX for
   2 kWe
   operation
- Operates as a quasiisothermal reactor
  - Incorporates microchannel heat exchange
- Employs nonprecious metal catalyst
- Allow multicompartment bleed-in of air





# Operation of First Stage Microchannel PROX







#### **Future PROX Work**

- Continue to evaluate industrial PROX catalysts for use in microchannel reactors
- Evaluate aluminum and titanium alloys for microchannel PROX reactor
  - Potential weight reduction
- ► Integration of 1<sup>st</sup> and 2<sup>nd</sup> Stages
  - Investigate differential-temperature operation
- ► Test as part of integrated fuel processor with steam reformer, water-gas-shift reactors and heat exchangers
  - Evaluate fast startup, rapid transient potential
  - Evaluate thermal recuperation of PROX heat



# Reformate Desulfurization Using Microchannel Devices

- Concept: microchannel absorbers can provide compact units for H<sub>2</sub>S removal from reformate
  - ZnO absorption:
    - Fast uptake kinetics at T≥400°C but relatively high equilibrium H₂S concentration in high steam environments
    - Slower kinetics at T≤300°C but lower equilibrium H<sub>2</sub>S concentration
  - Differential temperature microchannel absorber can provide more effective H<sub>2</sub>S removal by operating over temperature range 300-400°C
- Challenge: absorber bed capacity in microchannel configuration
- Approach and status
  - Carry out initial studies (underway) to quantify ZnO uptake kinetics vs. T
  - Calculate optimal temperature profile for differential temperature absorber
  - Construct microchannel unit and obtain experimental performance data under differential temperature conditions
  - Compare results with isothermal operation



# Balance-of-Plant Partial Condenser / Phase Separator

- Objective: Develop compact microchannel heat exchange technology for the recovery and recycle of water in fuel processor / fuel cell systems.
- Designed for water recovery from PEM fuel cell cathode effluent
- Condenses and separates water
- Aluminum for light weight
- Air-cooled
- Cross-flow for low coolant-air pressure drop
- 1.5-kWe-scale cathode condenser
  - Air coolant 30 °C
  - Air pressure drop 2.2 in. H2O
  - Weight 260 g
  - Volume 170 mL
  - Est. Fan Power 14 W full-scale



3 condensing channels (left to right) 4 cooling channels with fins



**Vapor-Liquid Separator** 

aboratory of Energy 17



### **Measured versus Predicted Performance**



- 32 std Liter/min air flow
- 48 std Liter/min air flow
- Average model prediction



- Actual performance exceeds predicted performance.
- 2000 W<sub>t</sub>/kg specific power at 74% water recovery.
- Water separation efficiency 90-100%.
- Coolant side pressure drop about 2X design ~ 4 in. H₂O.



#### **Interactions**

- Catalyst Development
  - Sud-Chemie, Inc. WGS, PROX, Desulfurization
  - Engelhard PROX
- Technology Transfer
  - Interest expressed by SOFCo for a 50-kWe-scale Differential Temperature Water Gas Shift reactor.
- ► Technology Spin-off
  - Microchannel Partial Condenser / Phase Separator successfully tested in zero gravity onboard NASA's KC-135 aircraft.
  - Microchannel Phase Separator is a candidate technology for NASA's Space Plane for water recovery from cathode of PEM FC power system.



## **Responses to Comments**

- "WGS durability may be a significant challenge..." and "Lack of WGS durability data"
  - Catalyst deactivation has been a challenge, particularly with thermal cycles and restarts, and is under investigation.
  - A single catalyst piece has been on stream for 100 hours with nominal initial deactivation; ~ 10-20%.
- "Little of proposed work is related to advancing fundamental understanding, which should be of high importance"
  - WGS work is pursuing a fundamental understanding, including:
    - Kinetic model development in an engineered form
    - Finite element heat and mass transfer models of reactors for analysis and design
    - Scale-up from single channel to multi-channel reactors to understand the issues associated with scale-up, such as flow maldistribution

